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Abstract
There is mounting experimental evidence that strong off-equilibrium
phenomena, such as ‘memory’ or ‘ageing’ effects, play a crucial role in
the physics of vortices in type II superconductors. In the framework of a
recently introduced schematic vortex model, we describe the out-of-equilibrium
properties of vortex matter. We develop a unified description of ‘memory’
phenomena in magnetic and transport properties, such as magnetization loops
and their ‘anomalous’ second peak, logarithmic creep, ‘anomalous’ finite creep
rate for T → 0, ‘memory’ and ‘irreversibility’ of I–V characteristics, time-
dependent critical currents, ‘rejuvenation’ and ‘ageing’ of the system response.

PACS numbers: 74.24.-q, 74.60.-w, 75.10.Nr

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The properties of vortex dynamics in type II superconductors crucially affect the overall
system behaviour and have, thus, relevant effects in technological applications [1–4]. In
particular, in the last few years it has been discovered that vortex matter exhibits important,
even dominant, history-dependent phenomena in magnetic and transport properties, such as
memory and hysteresis in magnetization curves along with irreversibility and ageing in I–V
characteristics (see [3, 4, 29, 31–39, 42, 44, 57, 58] and references therein). These phenomena
are markedly out-of-equilibrium effects and, here, we discuss their features as they emerge
from the off-equilibrium dynamics of vortex matter (see [1, 6–9]).

The above experimental findings have interesting analogies with ‘memory’ and ‘ageing’
effects observed in other glass formers, such as polymers, supercooled liquids or random
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magnets [5, 6]. Interestingly, ‘glassy’ dynamics have important universal structural
properties [5, 6]. Off-equilibrium features arise when typical experimental probing times
get very short compared with the system long (often inaccessibly long) intrinsic relaxation
time scales. These can become huge at low temperatures or high densities, where a true
equilibrium glass phase transition in some cases can be also found. Such glass transitions are
called ‘ideal’ [5] because, as just stated, equilibrium might be hardly approached. In fact, the
notion of ‘glassy phases’ has been repeatedly used in relation to new equilibrium phases of
vortex matter [1, 10–13]. We are concerned here, however, with the general properties of off-
equilibrium dynamics of vortices, not with their equilibrium transitions. (Note that in several
cases the ‘ideal’ transition is found at zero temperature, but the systems have apparent ‘glassy’
dynamics (see examples in [6].).

We consider a schematic model [14] that contains the essential degrees of freedom of a
vortex system and is simple enough to allow a complete understanding of its off-equilibrium
dynamics in the same perspective successfully used for other glassy systems [5,6]. The model
(a coarse-grained [15, 16] system of repulsive particles wandering in a pinning landscape in
the presence of a thermal bath and an external drive) describes several phenomena of vortex
physics, ranging from a re-entrant phase diagram in the (B, T ) (field–temperature) plane, to
the anomalous ‘second peak’ in magnetization loops (the ‘fishtail’), logarithmic creep and
‘ageing’ of magnetic relaxation, the finite creep rates for T → 0 (without use of ‘quantum
effects’), ‘memory’ and history-dependent behaviours in vortex flow and in I–V characteristics,
and many others [14].

We describe here the properties of such a model and depict a unified picture of creep and
transport measurements. In particular, the system dynamics can be described by identifying
its important time scales and their dependence on temperature, magnetic field and applied
electrical current. We also suggest new experiments that will help to clarify the nature of
glassy aspects in superconductors.

In the next section we introduce the model [14] and in sections 3 and 4 we systematically
compare its behaviours with experiments on magnetic and transport properties. Finally, in
section 5 we give an overview of our scenario of off-equilibrium phenomena in vortex matter.

2. The ROM model

Vortices in type II superconductors are described by the Ginzburg–Landau equations. The
typical high vortex densities and long interaction range imply that the vortex system is strongly
interacting. In brief, this makes the theoretical description of its equilibrium and, even worse,
dynamical properties highly non-trivial [1, 3].

An appealing and much used approximation for the microscopic vortex dynamics is based
on molecular dynamics (MD) simulations (see, for instance, [17–20]). However, even this
simplified approach is hardly feasible to explore the physics of the long time and space
scales, and the low-temperature and high-density region where glassy features substantially
appear [20]. Alternatively, it has been proposed to use schematic discrete time and space
models [22] to study vortex properties.

More generally, to describe the relevant degrees of freedom of the vortex system one can
introduce useful coarse graining methods, successfully applied to deal with many other multi-
scale problems (such as magnetism or crystals defects, see [23]). For clarity, let us consider
the simple case of a system of straight parallel vortex lines, corresponding to a magnetic field
B along the z-axis, where vortices interact through a two-body potential [2]:

A(r) = φ2
0

2πλ′2
[
K0(r/λ

′) − K0(r/ξ
′)
]

(1)
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Figure 1. Schematic illustration of the procedure
introduced to define the ROM lattice model. The original
vortex system (left), coarse grained in ‘cells’ of size l0, is
mapped into a lattice field model (right).

K0 being the MacDonald function, and ξ and λ the correlation and penetration lengths
(ξ ′ = cξ/

√
2, λ′ = cλ, c = (1 − B/Bc2)

−1/2, with Bc2 the upper critical field). A simple
application of the above methods in the present case, proposed in [14, 16], consists in coarse
graining the vortex system in the xy-plane by introducing a square grid of lattice spacing, l0,
of the order of the London length, λ (see figure 1). (Note that for l0 → ξ one recovers the
original system dealt within MD.)

By this procedure, the original vortex system is mapped into a lattice model characterized
by a classical field, ni , representing the number of vortices on the ith coarse-grained cell (see
figure 1). The presence in superconductors of an upper critical field, Bc2, implies that ni must
be an integer number smaller than Nc2 = Bc2l

2
0/φ0 [14] (here φ0 = hc/2e is the flux quantum,

c the light speed, h the Planck constant and e the electron charge). The Hamiltonian of the
coarse-grained model is [14]

H = 1
2

∑
ij

niAijnj − 1
2

∑
i

Aii |ni | −
∑
i

A
p

i |ni |. (2)

The first two terms of H describe the repulsion between the vortices and their self-energy, and
the last the interaction with a random pinning background. For the sake of simplicity, since
l0 ∼ λ, we can consider the simplest version of H: we choose Aii = A0 = 1; Aij = A1 < A0

if i and j are nearest neighbours; Aij = 0 otherwise; the random pinning is taken to be delta-
distributedP(Ap) = (1−p)δ(Ap)+pδ(Ap−A

p

0 ), wherep is the fraction of sites with pinning
amplitude A

p

0 (see1). We express all energy scales in units of A0 and, in particular, consider
the important ratio κ∗ = A1/A0. The existence of two possible orientations of the vortices
can be taken into account by giving the particles, ni , a ‘charge’ si = ±1 [1, 2]. Neighbouring
particles with opposite ‘charge’ annihilate. The external applied field controls the overall
system ‘charge density’ and thus a chemical potential term −µ

∑
i sini must be added to the

Hamiltonian in equation (2) (where ni is replaced by sini).
A standard mean field replica theory [14] allows us to evaluate the equilibrium phase

diagram in the field–temperature plane of the above Hamiltonian, as shown in figure 2. In
the absence of disorder it has, at low temperatures, a re-entrant order–disorder transition in
agreement with predictions [1] and experiments on vortices in superconductors (see [1, 3, 4]
or, for instance, data on 2H–NbSe2 superconductors from [29]). For moderate values of the
pinning energy (Ap

0 � A1), a second-order transition still takes place, which at sufficiently
strong pinning is expected to become a ‘glassy’ transition, as is seen in random field Ising
models [27]. The extension of the low-T phase shrinks by increasing A

p

0 (i.e. the highest
critical temperature, T ∗

m, decreases) and the higher is κ∗ the smaller the re-entrant region (facts
in agreement with experiments: see, for instance, [3,4,28,29]). The above phase diagram can
help to compare experimental and model temperature/field scales.

1 Here Ap

0 = 0.3A0, Nc2 = 27, p = 1/2 and, if not differently stated, A1 = 0.28A0 (the H parameters can be related
to the real material parameters [14]). L = 32, but the results are checked up to L = 128.



8428 M Nicodemi and H J Jensen

0.5 1.0 1.5 2.0 2.5 3.0

T*

0

1

2

3

4

5

6

7

H
*

0.5 0.6 0.7 0.8 0.9 1.0
x/L

-0.8

-0.6

-0.4

-0.2

0.0

M

16.0
14.3
13.8
13.0
10.8
9.94
Next

Figure 2. Mean field phase diagram of the ROM model in the plane (H ∗, T ∗) (T ∗ = T/A1 and
H ∗ = µ/kBT are the dimensionless temperature and chemical potential of the applied field), for
κ∗ = 10 and A

p

0 = 0.0; 0.5; 0.75 (results: full, dotted and dashed curves) and κ∗ = 3.3 and
A
p

0 = 0.0 (long dashed curve). Inset: the magnetization Bean profile, M(x), as a function of the
transversal spatial coordinate x/L (L is the system linear size), for the shown values Next , in the
2D ROM model (here T = 0.3, and the sweep rate of the external field is γ = 1.1 × 10−3). Notice
the change in shapes when Next crosses Nsp � 13.5 (filled versus empty symbols).

We now go beyond mean field theory and discuss the dynamics of the model. First we
consider the case where the external current is absent, i.e. there is no Lorentz drive on vortices.
The simplest consistent approach to simulate the system relaxation at non-zero temperatures is
a Monte Carlo Kawasaki dynamics [24], i.e. a dynamics in which particles can diffuse around
coupled to the thermal bath and subject to their interaction potential landscape of equation (2).
This is a very standard approach in computer simulations of dynamical processes in complex
fluids [24]. In particular, we consider a system at a temperature T on a square lattice of size L
(see footnote 3) periodic in the y-direction. Its two edges parallel to the y-axis are in contact
with a vortex reservoir, i.e. an external magnetic field, of density Next. Particles can enter and
leave the system only through the reservoir.

The above model, called ROM (restricted occupancy model), is described in detail in [14].
It is extremely schematic, thus also fully tractable and, interestingly, it is able to describe many
of the experimental observations on magnetic and transport properties of vortex physics.

3. The magnetization

The simplest quantity to characterize the vortices system is the magnetization, which we now
consider. In this section we will draw a picture of time-dependent magnetic features such as
magnetization loops, their second peak, ‘ageing’ creep, as well as phenomena like the finite
creep rate, Sa > 0, found when T → 0.

The system is prepared by zero-field cooling at a given T and then increasing the external
field, Next, with a constant rate, γ . During the ramp of Next we record the magnetization

M(t) = Nin(t) − Next(t). (3)
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Figure 3. The magnetization, M , as a function of the applied field density, Next , in the ROM
model at T = 0.3 for the shown sweep rates γ and material parameters κ∗ = A1/A0. Notice the
appearance of a ‘second magnetization peak’ when κ∗ is larger than a critical threshold k∗

c � 0.25.
Inset: the equilibrium value of M (i.e. when the field ramp rate γ → 0) at T = 0.3 (κ∗ = 0.26)
shows an apparent first-order phase transition associated to the second magnetization peak.

Here Nin = ∑
i ni/L

d and the Monte Carlo time, t , is measured in units of complete Monte
Carlo lattice sweeps.

3.1. Magnetization loops

At low temperatures pronounced hysteretic magnetization loops are seen when M is plotted
as a function of Next (see figure 3). Furthermore, when the parameter κ∗ = A1/A0 (κ∗

can be directly related to the Ginzburg–Landau parameter κ = λ/ξ [14]) is above a critical
threshold k∗

c � 0.25, a definite second peak (the so-called experimental ‘fish-tail’) appears in
M . Very similar magnetization data are observed in a number of different superconductors from
intermediate to high κ values (see, for instance, [3, 4, 28–36, 44, 46] and references therein).

The actual shape of loops depends on the system parameters (and its size). In particular,
the sweep rate of the external field, γ , is very important, as shown in figure 3. As soon as the
inverse of the sweep rate is smaller than the system characteristic relaxation time (see below)
strong hysteresis effects are present. Although the second peak does depend on the dynamics
through γ , in the ROM model it is related to a new phase transition: in the γ → 0 limit (i.e.
when the external field is ramped quasi-statically) its location, Nsp = 13.5, is associated with a
sharp jump in Meq ≡ limγ→0 M(γ ) (see inset of figure 3). These findings are consistent with
experiments (for instance, see [29–35,39,40,44,45]) and to some extents reconcile previously
proposed opposite descriptions (‘static’ versus ‘dynamic’).

3.2. History-dependent relaxation: ‘ageing’ creep

The presence, at low temperature, of sweep-rate-dependent hysteretic cycles, slowly relaxing
magnetization, and similar effects indicate that our system, on the observed time scales, is
not at equilibrium. We turn, therefore, to the theoretical description of the system dynamics
by investigation of two-times correlation functions. At a given working value of the applied
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Figure 4. The system equilibration time, τ , from equation (5), grows enormously with decreasing
temperature T (here Next = 10). Below the crossover temperature Tg ∼ 0.25, τ is larger than the
observation window. Inset: close to Tg , τ plotted as a function of 1/T approximately shows a VTF
behaviour, the continuous curve (see equation (6)).

field, we now also record the magnetic correlation function, C(t, tw) (with t > tw), which
gives richer information than M(t) (since the general dynamical features of C and M are very
similar, for clarity here we mainly discuss C):

C(t, tw) = 〈[M(t) − M(tw)]
2〉. (4)

At not too low temperatures, for instance at T = 1.0 (see figure 2 for a comparison of
such a T value with experimental scales), the system creep is characterized by finite relaxation
times and no ‘ageing’ is seen: C(t, tw) is a function of t − tw. At long times, C(t, tw) is well
fitted by the so-called Kohlrausch–Williams–Watts (KWW) law [14]:

C(t, tw) � C∞
{
1 − e−[(t−tw)/τ ]β

}
. (5)

Equation (5) defines the characteristic time scale of magnetic relaxation, τ . This is a crucial
quantity to be considered when dealing with dynamical aspects of magnetization. The
Kohlrausch exponent, β, and τ strongly depend on T (a fact to be discussed below, see
figure 4) and on the applied field Next [14]. The pre-asymptotic dynamics (i.e. t − tw � τ ) is
also interesting and characterized by various regimes. In particular, for not too short times, a
power law is observed over several decades.

The scenario described for T = 1.0 is found in a broad region at low temperatures.
However, around T = 0.5, a steep increase of τ is found (see figure 4). For instance at
Next = 10, for temperatures below Tg � 0.25, the characteristic time gets larger than our
recording window and the system definitely loses contact with equilibrium. The crossover
temperature, Tg(Next) (which may be a function of γ ) has a physical meaning similar to the
so-called phenomenological glass transition point in supercooled liquids [5]. The presence of
an underlying ‘ideal’ glass transition point, Tc(Next), is often located by some fit of the high-T
data of τ (see inset of figure 4), such as a Vogel–Tamman–Fulcher (VTF) (or a power) law:

τ = τ0 exp

(
E0

T − Tc

)
. (6)
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Figure 5. Inset: logarithmic time relaxation of the two-times correlation function, C(t, tw), as
a function of t − tw for the shown values of tw . Data are recorded at T = 0.1 (i.e. below Tg)
and Next = 16. The continuous curves are logarithmic fits from equation (7). Main frame: off-
equilibrium dynamical scaling. The relaxation data of C(t, tw) from the inset and those recorded
at Next = 4, 10, 16 for each of the shown tw are superimposed on the same master function. The
asymptotic scaling is C(t, tw) ∼ S(t/tw).

Our data in 2D are consistent with Tc = 0. Interestingly, the VTF behaviour found
here is in agreement with results from MD simulations of more realistic London–Langevin
models [14,17–20]. In particular, the analogies with ‘window glasses’ have been also outlined
in the first reference of [20]. A VTF behaviour has been already experimentally observed in
measures on samples resistivity (see [21]).

Since below Tg relaxation times are huge, one might expect that the motion of the particles
essentially stops. Instead, as shown below, the off-equilibrium dynamics has remarkably rich
‘ageing’ properties. In the inset of figure 5 we show that C(t, tw), at T = 0.1, exhibits strong
‘ageing’: C depends on both times t and tw; in particular, its evolution (see inset of figure 5)
is slower the older is the ‘age’ tw (‘stiffening’). In the entire low-T region (T < Tg), after a
short initial power law behaviour, C(t, tw) can be well fitted by a generalization of a known
interpolation formula, often experimentally used [1, 3], which now depends on the waiting
time, tw:

C(t, tw) � C∞

{
1 −

[
1 + u ln

(
t + t0

tw + t0

)]−1/µ
}

(7)

where the exponentµ = 1 andC∞, u and t0 are T andNext dependent parameters. Equation (7)
(in agreement with the general scenario of [41]) implies the presence of scaling properties of
purely dynamical origin (see figure 5): for times large enough (but smaller than the equilibration
time), C is a universal function of the ratio t/tw: C(t, tw) ∼ S(t/tw).

In experiments about vortex creep in superconductors a crossover is usually found from a
low-T region with logarithmic creep to a high-T region with typically power law or stretched
exponential relaxations (see for instance [43] and references in [3]). In particular, ageing in
magnetic creep has been recently observed in BSCCO samples [42]. We also recall that the
above phenomena are intriguingly common to many different systems ranging from polymers,
to supercooled liquids [5], spin glasses [6, 54] and granular media [59].
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guides for the eye.

3.3. Vortex mean square displacement

The microscopic origin of the above features in the system dynamics can be understood by
considering the vortex mean square displacement, R2(t) (plotted in figure 6 for Next = 10).
At high enough T , R2(t) is linear in t (in agreement with experiments and MD simulations,
see [47,48] and references therein), but at lower temperatures it shows a pronounced bending.
Finally, below Tg , the process becomes strongly sub-diffusive:

R2(t) ∼ tν (8)

with ν � 1. From this point of view, Tg is the location of a sort of structural arrest of the
system, where particle displacement is dramatically suppressed. Each vortex is caged by other
neighbouring vortices for long times. The system dynamics needs large-scale ‘co-operative
rearrangements’ to relax [5]. Interestingly, a very similar scenario has been recorded in real
superconducting samples (see for instance [44]).

3.4. The creep rate, Sa , for T → 0

With the insight on the system dynamics obtained in the previous sections, we can now
understand another intriguing experimental observation [49–52] about vortex matter: even
at very low temperatures (where activated processes should be absent) magnetic relaxation
does take place. This surprising phenomenon, previously interpreted in terms of ‘quantum
tunnelling’ of vortices [1], is also found in the present purely ‘classical’ vortex model. More
generally, we show here that a non-zero creep rate for T → 0 is to be expected in systems
‘ageing’ in their off-equilibrium dynamics.

Experiments investigate the temperature dependence of the creep rate, Sa , (see figure 7),
where

Sa =
∣∣∣∣∂ ln(M)

∂ ln(t)

∣∣∣∣ (9)
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Figure 7. The creep rate, Sa , in the ROM model for Next = 10 as a function of the temperature,
T , in units of A0 (κ∗ = 0.28, γ = 10−3). The superimposed curve is a linear fit. Inset: creep rate,
S, in a BSCCO single crystal at 880 Oe (from Aupke et al [49]).

(Sa is, as usual, averaged in some given temporal window [3, 49–52]). When the temperature
is extremely low the magnetization still logarithmically relaxes (see inset figure 8) and in both
experiments and in our simulations Sa approaches a finite plateau, Sa(0) > 0, for T → 0. In
figure 7, we plot the creep rate, Sa , as a function of T . For comparison we present experimental
data in BSCCO (from [50]) as inset (note that the values of Sa in our model and in real samples
are very similar). In particular, we find that a linear fit of Sa(T ) in the low-T regime is very
satisfactory (see figure 7):

Sa(T ) = S0
a + σT (10)

where both S0
a and σ are functions of the applied field Next. In the present model, as much

as in experiments [3, 51], Sa(T ) is non-monotonic in T : at high T it starts decreasing (this
is due to the fact that, for a given observation window, at higher T the system gets closer to
equilibrium, see figure 4 and [14]).

By varying the applied field we find a range of values for S0
a very similar to experimental

ones [49–52] and, in particular, S0
a seems to decrease on average by increasing the field

Next (see figure 8). The overall behaviour can be roughly interpolated with a power law:
S0
a (Next) � (Next/N0)

−x , where, for κ∗ = 0.28, N0 � 0.01 and x � 0.6. As shown in
figure 8, the presence of a small exponent, x, implies that sensible variations in S0

a can be
seen only by changing Next by orders of magnitude. Note that in figure 8 the dips in the Sa(0)
versus Next data found at certain values of Next (namely around 3, 13, and 20) are statistically
significant. They are located respectively close to the region of the low-field order–disorder
transition (see figure 2), the second peak transition and the re-entrant high-field order–disorder
transition.

In the slow off-equilibrium relaxation at very low temperatures no activation over barriers
occurs and the system simply wanders in its very high-dimensional phase space through the
few channels where no energy increase is required. We have already shown that at very low
T , the system equilibration time, τ(T ), diverges exponentially. In that region, the typical
observation time windows, tobs, are such that tobs/τ � 1, and the system is in the early stage
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of its off-equilibrium relaxation from its initial state. This is schematically the origin of the
flattening of Sa at very low T [14]. Notice that, in a system observed for an exponentially long
time, i.e. for tobs/τ � 1, the creep rate, Sa , would indeed go to zero.

Interestingly, our model in the limit T → 0 along with a saturation of the creep rate, S(T ),
also shows a saturation of dissipation related quantities. We show in figure 9 the differential
resistivity, ρ(T ) = dV/dI , measured for the same value of the model parameters used in the
calculation of the creep rateS(T )of figure 7 (the precise definition ofV and I is postponed to the
next section where we consider the I–V characteristics). The continuous curve superimposed
to ρ(T ) in figure 9 corresponds to the linear fit ρ(T ) = ρ0 + σρT . These results clearly show
a saturation in ρ(T ) at low T towards a finite value, in a way similar to the one recorded in
S(T ).

The present scenario, where off-equilibrium phenomena dominate the anomalous low-
T creep, is supported by the experimental discovery of ‘ageing’ in the system relaxation
[29, 32, 34, 36, 42, 57, 58]. In fact, strong discrepancies are found between ‘quantum creep
theory’ predictions [1] and the observed low-T relaxation in many compounds [14, 52, 53].
Interestingly, here a unified picture begins to emerge of magnetic and transport properties.
This is discussed further in the next section.

4. The I–V characteristic

Vortex flow in driven type II superconductors also shows strong memory and history-dependent
effects. Here, we outline the relations with magnetic properties and propose a scenario for
a broad set of these kind of phenomena ranging from ‘rejuvenation’ and ‘stiffening’ of the
system response, to ‘memory’ and ‘irreversibility’ in I–V characteristics. In relation to recent
experimental results [57,58], we discuss in particular the nature of ‘memory’ effects observed
in the response of the system to an external drive, i.e. the I–V characteristic. Our model
explains the peculiar form of such a ‘memory’ of vortex flow at finite T and other ‘anomalous’
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Figure 9. The differential resistivity, ρ = dV/dI , in the ROM model is plotted as a function of the
temperature, T , for Next = 10. The continuous superimposed curve is a linear fit. The saturation
of ρ(T ) for T → 0 well compares with the one of the magnetic creep rate, S(T ).

properties such as the time dependence of critical currents. The essential step is, again, to
identify the relevant time scales in the dynamics.

The system is zero-field cooled and prepared by increasingNext at constant rate, γ , up to the
working value (here, Next = 10). Then we monitor the system relaxation after applying a drive,
I (due to an external current which induces a Lorentz force on vortices), in the y-direction.
As in similar driven lattice gases [25], the effect of the drive is simulated by introducing a
bias in the Metropolis coupling of the system to the thermal bath: a particle can jump to a
neighbouring site with a probability min{1, exp[−(;H − εI )/T ]}. Here, ;H is the change
in H after the jump and ε = ±1 for a particle trying to hop along or opposite to the direction
of the drive and ε = 0 if orthogonal jumps occur. A drive I generates a voltage V [26]:

V (t) = 〈va(t)〉 (11)

where va(t) = v(t) is an average vortex ‘velocity’ at time t [14]. Here, v(t) = 1
L

∑
i vi(t) is

the instantaneous flow ‘velocity’, vi(t) = ±1 if the vortex i at time t moves along or opposite
to the direction of the drive I and vi = 0 otherwise.

4.1. Memory effects in driven vortex flow

We analyse a striking manifestation of ‘memory’ observed in experiments where the drive is
cyclically changed in the low-T region [58]. A drive I is applied to the system and, after a time
t1, abruptly changed to a new value I1; finally, after waiting a time t2, the previous I is restored
and the system evolves for a further t3 (see lower inset of figure 10). The measured V (t) is
shown in the main panel of figure 10 for T = 0.1. A first observation is that after the switch to
I1 the system seems to abruptly reinitiate its relaxation approximately as if it has always been
at I1 (see the caption of figure 10), a phenomenon known as ‘rejuvenation’ in thermal cycling
of spin glasses and other glassy systems [60]. The more surprising fact is, however, that for I1

small enough (say I1 � I ∗, I ∗ ∼ O(1) to be quantitatively defined below) when the value I of
the drive is restored the voltage relaxation seems to restart from where it was at t1, i.e. where
it stopped before the switch to I1 (see figure 10). Actually, if one ‘cuts’ the evolution during t2
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Figure 10. In the ROM model (at T = 0.1, Next = 10) the voltage, V (t), is plotted as a function
of time for a drive I = 1 (see the continuous bold curve). As shown in the lower inset, after a time
lag t1, the drive is abruptly changed to I1 for a time t2 and finally it is set back to its previous value.
When I is switched to I1 (in the figure we plot data for the shown four different values of I1) the
system seems to ‘rejuvenate’: it suddenly restarts its relaxation along the path it would have had if
I = I1 at all times (consider the continuous and dashed bold curves, corresponding to I = I1 = 1
and I = I1 = 0.8, plotted for comparison). By restoring the drive to I = 1 after a time t2, the
system shows a strong form of ‘memory’: if t2 and I1 are small enough (see text) the relaxation of
V (t) restarts where it was at t1. However, if t2 and I1 are too large, this is not the case, as shown
in the upper inset. In this sense, the above is an ‘imperfect memory’.

and ‘glues’ together those during t1 and t3, an almost perfect matching is observed (see upper
inset of figure 10). In particular, the matching is better the smaller I1. What is happening
during t2 is that the system is trapped in some metastable states, but not completely frozen as
shown by a small magnetic, as well as voltage, relaxation. These non-trivial ‘memory’ effects
are experimentally found in vortex matter [58] and glassy systems [60]. We call them a form
of ‘imperfect memory’, because they tend to disappear when the time spent at I1 becomes too
long or, equivalently (as explained below) when, for a given t2, I1 becomes too high, as shown
in the upper inset of figure 10.

4.2. History-dependent I–V

We now turn to the time-dependent properties of the current–voltage characteristic. As in
real experiments on vortex matter [58], we let the system undergo a current step of height
I0 for a time t0 before starting to record the I–V by ramping I , as sketched in the inset of
figure 11. Figure 11 shows (for T = 0.1) that the I–V depends on the waiting time t0. The
system response is ‘ageing’: the longer t0, the smaller the response, a phenomenon known as
‘stiffening’ in glass formers [5, 6, 60]. These effects are manifested in the violation of time
translation invariance of two-times correlation functions, already discussed.

These simulations also reproduce the experimentally found time dependence of the critical
current [58]. Usually, one defines an effective critical current, I eff

c , as the point where V

becomes larger than a given threshold (say Vthr = 10−5 in our case): one then finds that I eff
c is

t0 and I0 dependent (like in experiments [58] I eff
c is slowly increasing with t0, see figure 11).
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Figure 11. The I–V obtained at T = 0.1 by ramping I after keeping the system in presence of a
drive I0 = 1 for a time t0 as shown in the inset. The response, V , is ‘ageing’ (i.e. depends on t0)
and, more specifically, stiffening: it is smaller the longer t0.

It is interesting to consider another current cycling experiment which outlines the
concurrent presence of irreversibility and memory effects (see figure 12). The I–V is measured
by ramping I up to some value Imax. Then I is ramped back to zero, but at a given value Iw
the system is let to evolve for a long time tw (in the main panel of figure 12, Iw is located by an
upwards arrow; the two arrows correspond to two different values for Iw). Finally, I is ramped
up again (see inset of figure 12). The resulting irreversible V (I) is shown in figure 12. For
I > Iw the decreasing branch of the plot (empty circles) slightly deviates from the increasing
one (filled circles), showing the appearance of irreversibility. This is even more apparent after
tw: for I < Iw the two paths are clearly different. Interestingly, upon increasing I again (filled
triangles), V (I) does not match the first increasing branch, but the latest, the decreasing one:
in this sense there is coexistence of memory and irreversibility. Also very interesting is that
by repeating the cycle with a new Iw (squares), the system approximately follows the same
branches. This non-reversible behaviour is also found in other glassy systems [60]. However,
spin glasses, for instance, seem to show the presence of the so-called chaos effects [60, 61].
(This corresponds to the hypothesis that the free energy of metastable states vary chaotically
with temperature, see for instance [61].) The chaos effect is absent in our system as it is
also in other ordinary glass formers [6, 60]. This kind of interplay between irreversibility and
memory can be checked experimentally in superconductors and thereby assess the present
scenario.

4.3. Differential resistivity

In figure 13, we plot the I–V recorded after ramping I at T = 1 (filled squares) and
T = 0.1 (open circles). The low-T I–V has the typical S shaped form experimentally
found [3, 4, 55–58], but, interestingly, this is only an effect of short times of observation. The
linear continuous functions in figure 13 are, in fact, the asymptotic I–V , i.e. those recorded
after applying a drive I and measuring V in the long-time regime (for t = 1.5 × 105 in
figure 14). The same analysis applies to the differential resistivity, ρ = dV/dI , shown
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Figure 12. The I–V is measured at T = 0.1 during cycles of I (see also the inset): I is at first
increased up to Imax (filled circles); along the descending branch of the cycle (empty circles), when
I = Iw (in the main panel the Iw , for two cycles, are located by the arrows) the drive is kept fixed
for a time tw = 104 and then the cycle restarted; finally, I is ramped up again (filled triangles).
For I > Iw , the first increasing ramp and the decreasing one (resp. filled and empty circles) do
not completely match, showing irreversibility in the I–V . After waiting tw at Iw , a much larger
separation is seen. However, by raising I again (filled triangles) a strong memory is observed:
the system does not follow the first branch (filled circles), but the decreasing one (empty circles).
Furthermore, in a cycle with a lower Iw (squares), the same branches are found.

in the inset of figure 13. One might also expect to see here some characteristic regimes
(defined, for instance, by the values Im, Ip of the inset of figure 13) in the ‘short time’
ρ(I). They might be the off-stationarity, finite-temperature rests of crossovers between
different plastic channel flow regimes typically found at T = 0, as discussed in [16–18, 48]
and references therein (see also [63]). Here, the linear behaviour of the asymptotic I–
V indeed shows that the crossovers in the ‘short time’ ρ(I) tend to slowly disappear
with time, thus they cannot correspond to transitions among different driven stationary
phases [17–20, 57, 58, 63]. This conclusion holds despite the regular behaviour of Im
and Ip with T also experimentally seen (for instance Ip seems to rapidly grow with T ).
An intrinsic structure in ρ can possibly be observed at sufficiently lower currents and
temperatures [63].

4.4. Voltage relaxation

The natural step to understand the above observations is the identification of the characteristic
time scales of the driven dynamics, which in the present model can be well accomplished. This
we now discuss. Upon applying a small drive, I , the system response, V , relaxes following
a pattern with two very different parts: at first a rapidly changing nonlinear response is seen,
later followed by a very slow decrease towards stationarity (see V (t) in figure 14 for T = 1
and I ∈ {1, 2, 3}). For instance, for I = 3 in a time interval ;t � 2 × 10−1, V leaps from
about zero to ;Vi ∼ 2 × 10−3, corresponding to a rate ri = |;Vi/;t | ∼ 10−2. This is to be
compared with the rate of the subsequent slow relaxation from, say, t = 2 × 10−1 to t = 104,
rf ∼ 10−7: ri and rf differ by five orders of magnitude.
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Figure 13. The I–V is recorded by ramping I for the shown T . The continuous and dotted curves
(resp. T = 1, 0.1) are the asymptotic I–V , i.e. those where, for a given I , V is measured after
waiting t = 1.5 × 105 (see figure 14). Inset: the differential resistivity, ρ = dV/dI , for the
same data of the main panel. The horizontal lines are from a linear fit to the asymptotic I–V .
The characteristic values Im and Ip roughly locate crossover points in the ‘short time’ ρ, which,
however, disappear if t → ∞.
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Figure 14. The time evolution of the response function, V (t), for the shown values of the drive I (at
T = 1 and Next = 10). In the asymptotic regime V (t) is well fitted with V (t) ∝ exp[−(t/τV )

β ].
Inset: the characteristic scale of relaxation, τV (I ), as a function of I . For I → 0, τV (I ) seems to
saturate to a finite value which implies that at T = 1 the critical current is zero, Ic = 0.

In agreement with experimental findings [57, 58, 62], the slow relaxation of V (t) has
a characteristic double-step structure, which asymptotically can be well fitted by stretched
exponentials: V (t) ∝ exp(−t/τV )

β . (At lower T inverse logarithmic relaxations are
found [14].) The above long-time fit defines the characteristic asymptotic scale, τV , of
relaxation under driving. The exponent β and τV are a function of I , T and Next (see inset
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figure 14): in particular τV (I ) decreases with I and seems to approach a finite plateau for
I < I ∗, with I ∗ � O(1). In this sense, the presence of a drive I makes the approach to
stationarity faster and has an effect similar to an increase in T .

The outlined properties of τV clearly explain the history-dependent effects in the
experiments previously considered. For instance, the ‘imperfect memory’, discussed in
figure 10, is caused by the presence of a long, but finite, scale τV in the problem: for a
given I1 the system seems to be frozen whenever observed on times scales smaller than τV (I1).
Thus, if t2 is short enough (t2 < τV (I1)) the system preserves a strong ‘memory’ of its state
at t1. The weakening of such a ‘memory’ found for higher currents I1 in figure 10 is also a
consequence of the strong decrease of τV (I ) with I . The phenomenon of ‘rejuvenation’ (see
figure 10) is, in turn, a consequence of the presence of the extremely fast first part of relaxation
found in V (t) upon applying a drive and of the above long-term memory. The existence of
the slow part in the V (t) relaxation also affects the ‘stiffening’ of the response in the I–V of
figure 11, which is due to the non-stationarity of the vortex flow on scales smaller that τV .
Actually, in figure 11, for a given I the value of V on the different curves corresponds to the
system being probed at different stages of its non-stationary evolution. Finally, in brief, the
fact that τV (I ) is smaller at high currents, I , and larger at small I (and T ), is responsible for
the surprisingly concomitant effects of irreversibility and memory of figure 12.

The origin of these time-dependent properties of the driven flow, and in turn those of I–V ,
traces back to the concurrent vortex creep and reorganization of vortex domains. In fact, both
with or without an external drive, the system evolves in the presence of a Bean-like profile
(see inset of figure 2) which in turn relaxes. An important discovery is that the characteristic
times scales of voltage and magnetic relaxation are approximately proportional [14]. This
outlines that the non-stationary voltage relaxation is structurally related to the reorganization
of vortices during the creep (a fact confirmed by recent experiments [36]).

5. Conclusions

In conclusion, we showed that the replica mean field theory and Monte Carlo simulations of
a schematic statistical mechanics lattice model [14] for vortices in type II superconductors
(a system of particles diffusing in a pinning landscape) offer a comprehensive framework of
off-equilibrium magnetic and transport properties observed in vortex matter. Off-equilibrium
phenomena in many respect are known to show strong ‘universalities’ [5, 6]. In fact, here
we considered either a mean field or a two-dimensional version of the ROM model, which,
interestingly, reproduces a very broad spectrum of experimental results. MD simulations of
more realistic systems, when existing, seem to confirm the present scenario [14, 17–20], and,
though very demanding in the low-T and high-field region, they can be an essential test for it.

We have seen that the model shows a re-entrant phase diagram in the field–temperature
plane (B, T ), analogous to what is observed in vortex matter. More specifically, we discussed
the off-equilibrium, ‘ageing’, properties of magnetic creep. At low temperatures a crossover
point is found, Tg(Next), where the system relaxation times become exponentially large. They
seem to diverge à la VTF at a lower temperature, Tc(Next), where an ‘ideal’ glassy transition
point can be located. Magnetic creep changes its structure around Tg: above Tg it shows power
laws asymptotically followed by stretched exponential saturation; below Tg it is logarithmic.
This corresponds to a change in microscopic vortex motion: from diffusive (above Tg) to
strongly sub-diffusive [14]. We showed that in the low-temperature region the system is very far
from equilibrium and its time correlation functions, no longer invariant under time translations,
have interesting dynamical scaling properties analogous to those of other ‘ageing’ systems.
The above ‘off-equilibrium’ scenario also explains the surprising experimental discovery of a
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finite creep rate, Sa > 0, when T → 0 (previously interpreted in terms of ‘quantum tunnelling’
of vortices [1]) in the same framework of our purely ‘classical’ model.

At not too high temperatures (but still well above Tg), magnetization loops are typically
found when M is plotted as a function of the applied field, including a definite ‘second peak’
when the Ginzburg–Landau parameter is above a critical threshold. The ‘second peak’ is
associated with a new phase transition in the system. This can be difficult to see in experiments
because samples can be significantly out of equilibrium, as shown by the dependences of the
loops on the external field sweep rate.

Vortex flow in driven type II superconductors also shows strong memory and history-
dependent effects. We proposed a scenario for a broad set of these kind of phenomena
ranging from ‘rejuvenation’ and ‘stiffening’ of the system voltage response, ‘memory’ and
‘irreversibility’ in I–V characteristics, to history-dependent critical currents. In particular, we
have shown how creep and transport properties in driven media are related.

The emerging unifying scenario of magnetic and transport properties in vortex physics that
we discussed has interesting relations with off-equilibrium phenomena in other glass formers
and complex fluids such as random magnets and supercooled liquids.
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